Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 14(5): e8190, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29759983

RESUMEN

Over 40% of proteins in any eukaryotic genome encode intrinsically disordered regions (IDRs) that do not adopt defined tertiary structures. Certain IDRs perform critical functions, but discovering them is non-trivial as the biological context determines their function. We present IDR-Screen, a framework to discover functional IDRs in a high-throughput manner by simultaneously assaying large numbers of DNA sequences that code for short disordered sequences. Functionality-conferring patterns in their protein sequence are inferred through statistical learning. Using yeast HSF1 transcription factor-based assay, we discovered IDRs that function as transactivation domains (TADs) by screening a random sequence library and a designed library consisting of variants of 13 diverse TADs. Using machine learning, we find that segments devoid of positively charged residues but with redundant short sequence patterns of negatively charged and aromatic residues are a generic feature for TAD functionality. We anticipate that investigating defined sequence libraries using IDR-Screen for specific functions can facilitate discovering novel and functional regions of the disordered proteome as well as understand the impact of natural and disease variants in disordered segments.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Choque Térmico/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Activación Transcripcional , Clonación Molecular , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Aprendizaje Automático , Proteoma/genética , Análisis de Secuencia de ADN
2.
Artículo en Inglés | MEDLINE | ID: mdl-27679670

RESUMEN

After more than three decades since the discovery of transcription activation domains (ADs) in gene-specific activators, the mechanism of their function remains enigmatic. The widely accepted model of direct recruitment by ADs of co-activators and basal transcriptional machinery components, however, is not always compatible with the short size yet very high degree of sequence randomness and intrinsic structural disorder of natural and synthetic ADs. In this review, we formulate the basis for an alternative and complementary model, whereby sequence randomness and intrinsic structural disorder of ADs are necessary for transient distorting interactions with promoter nucleosomes, triggering promoter nucleosome translocation and subsequently gene activation.

3.
Cell Stress Chaperones ; 20(5): 833-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26003133

RESUMEN

Development of novel anti-cancer drug leads that target regulators of protein homeostasis is a formidable task in modern pharmacology. Finding specific inhibitors of human Heat Shock Factor 1 (hHSF1) has proven to be a challenging task, while screening for inhibitors of human Heat Shock Factor 2 (hHSF2) has never been described. We report the development of a novel system based on an in vivo cell growth restoration assay designed to identify specific inhibitors of human HSF2 in a high-throughput format. This system utilizes a humanized yeast strain in which the master regulator of molecular chaperone genes, yeast HSF, has been replaced with hHSF2 with no detrimental effect on cell growth. This replacement preserves the general regulatory patterns of genes encoding major molecular chaperones including Hsp70 and Hsp90. The controlled overexpression of hHSF2 creates a slow-growth phenotype, which is the basis of the growth restoration assay used for high-throughput screening. The phenotype is most robust when cells are cultured at 25 °C, while incubation at temperatures greater than 30 °C leads to compensation of the phenotype. Overexpression of hHSF2 causes overexpression of molecular chaperones which is a likely cause of the slowed growth. Our assay is characterized by two unique advantages. First, screening takes place in physiologically relevant, in vivo conditions. Second, hits in our screen will be of medically relevant potency, as compounds that completely inhibit hHSF2 function will further inhibit cell growth and therefore will not be scored as hits. This caveat biases our screening system for compounds capable of restoring hHSF2 activity to a physiologically normal level without completely inhibiting this essential system.


Asunto(s)
Proteínas de Choque Térmico/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Factores de Transcripción/genética , Proteínas de Choque Térmico/antagonistas & inhibidores , Humanos , Chaperonas Moleculares/metabolismo , Organismos Modificados Genéticamente , Saccharomyces cerevisiae , Factores de Transcripción/antagonistas & inhibidores
4.
Cell Stress Chaperones ; 20(2): 355-69, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25416387

RESUMEN

Histone chaperones are an integral part of the transcription regulatory machinery. We investigated the involvement of histone chaperones and their functional interactions with ATP-dependent chromatin remodeling complexes in the regulation of yeast heat shock genes. Strong functional interaction between the histone chaperone ASF1 and the ATP-dependent chromatin remodeling complex SWI/SNF is exhibited in synergistic diminishment of nucleosome displacement during heat shock in the ΔASF1/ΔSNF2 strain in comparison to individual ASF1 or SNF2 inactivation. A similar but less pronounced effect was observed for ISW1/ASF1 inactivation but not for ASF1/STH1 (RSC complex) combinatorial inactivation. The depletion of Spt16, which is a major subunit of the FACT histone chaperone complex, leads to a severe growth defect phenotype associated with unusual thermotolerance. The acquired thermotolerance in the Spt16-depleted strain is associated with a defect in the reassembly of nucleosomes at the promoters of heat shock genes during sustained heat stress, leading to increased recruitment of the transcriptional activator HSF and RNA polymerase II. The defect in nucleosome assembly associated with Spt16 depletion also leads to an increased tolerance to stress due to an increased concentration of NaCl.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Doxiciclina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/efectos de los fármacos , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
5.
Methods Mol Biol ; 809: 279-89, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22113283

RESUMEN

Investigation of DNA-protein interactions is a key approach in understanding mechanisms of gene regulation. The method described allows detection of dynamic DNA-protein interactions occurring at gene promoters in living cells during the time scale of seconds and minutes. The combination of chromatin immunoprecipitation with real-time PCR allows for detection of changes in activator and co-activator content of any promoter during transcriptional activation. The described method is most applicable to investigation of processes resulting in nucleosome loss at gene promoters during the induction of transcription. The approach is also applicable to any dynamic process involving DNA-protein interactions.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Inmunoprecipitación de Cromatina/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Ensamble y Desensamble de Cromatina/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Activación Transcripcional
6.
Mol Cell Biol ; 28(4): 1207-17, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18070923

RESUMEN

The stress response in yeast cells is regulated by at least two classes of transcription activators-HSF and Msn2/4, which differentially affect promoter chromatin remodeling. We demonstrate that the deletion of SNF2, an ATPase activity-containing subunit of the chromatin remodeling SWI/SNF complex, eliminates histone displacement, RNA polymerase II recruitment, and heat shock factor (HSF) binding at the HSP12 promoter while delaying these processes at the HSP82 and SSA4 promoters. Out of the three promoters, the double deletion of MSN2 and MSN4 eliminates both chromatin remodeling and HSF binding only at the HSP12 promoter, suggesting that Msn2/4 activators are primary determinants of chromatin disassembly at the HSP12 promoter. Unexpectedly, during heat shock the level of Msn2/4 at the HSP12 promoter declines. This is likely a result of promoter-targeted Msn2/4 degradation associated with transcription complex assembly. While histone displacement kinetic profiles bear clear promoter specificity, the kinetic profiles of recovery from heat shock for all analyzed genes display an equal or even higher nucleosome return rate, which is to some extent delayed by the deletion of SNF2.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Genes Fúngicos , Respuesta al Choque Térmico , Cinética , Unión Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/deficiencia , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...